
RAVE:
Pablo Vizcaino, Filippo Mantovani, Jesus Labarta, Roger Ferrer
RISC-V Technical Session, October 10th

1

RISC-V Analyzer of Vector Executions
a QEMU tracing plugin

Outline

First half:
◼ Background on RVV
◼ EPAC chip
◼ Simulation environment

◼ Why do we need RAVE?

◼ How does RAVE work?
◼ Performance and use cases

Second half:
◼ RAVE demo

2

Motivation

3

- RVV (RISC-V Vector extension) is RV’s bet for High Performance Computing

Motivation

4

Implementation-defined max VLISA-defined max VL

128b

NEON

16384b

NEC-VE

[128b → *]

RVV

128b

SSE

256b

AVX2

512b

AVX512

[128b→2048b]

SVE

- RVV (RISC-V Vector extension) is RV’s bet for High Performance Computing

Motivation
- RVV (RISC-V Vector extension) is RV’s bet for High Performance Computing

5

Implementation-defined max VLISA-defined max VL

 Runtime
 Variable VL

128b

NEON

16384b

NEC-VE

[128b → *]

RVV

Scalar processor SIMD (e.g., AVX2) Variable VL (e.g., RVV)

128b

SSE

256b

AVX2

512b

AVX512

[128b→2048b]

SVE

Who is implementing this technology?

6

European Processor Initiative (EPI)
 - Rhea: arm-based general purpose CPU
 - EPAC: European Processor Accelerator
 - Based on RISC-V, an open ISA
 - Many tiles: VRP, STX, VEC

AVX512 

SVE
512 bits per vector (8 DP elems)

Up to 2048 bits per vector (16 DP elems)

16384 bits per vector
(256 DP elems)

Very large vector length:

How can you develop code for this accelerator?

- BSC has the Software Development Vehicles (SDV)[1]:

7

LLVM-based compiler
(Vectorization)

FPGA
(EPAC HW Emulation)

Profile tools
(Analysis)

EPAC Testchip
(EPAC Silicon)

[1] Filippo Mantovani et al. (2023, May). Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study. In
International Conference on High Performance Computing (pp. 526-537). Cham: Springer Nature Switzerland.

SiFive Unmatched + Vehave
(SW Emulation on a Scalar RISC-V board)

How can you develop code for this accelerator?

- BSC has the Software Development Vehicles[1]:

8

SiFive Unmatched + Vehave
(SW Emulation on a Scalar RISC-V board)

LLVM-based compiler
(Vectorization)

FPGA
(EPAC HW Emulation)

Profile tools
(Analysis)

EPAC Testchip
(EPAC Silicon)

[1] Filippo Mantovani et al. (2023, May). Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study. In
International Conference on High Performance Computing (pp. 526-537). Cham: Springer Nature Switzerland.

Access restricted
to EPI partners

Open access! Open access!

Open access……but requires a RISC-V board

Another issue with simulation (Vehave)

9

Vector
Instr.

emulation

Illegal
instruction

Vector
Instr.

emulation

Illegal
instruction

Vector
Instr.

emulation

Illegal
instruction

Vector
Instr.

emulation

Illegal
instruction

Scalar Instr on Scalar core

Vectorized binary

Another issue with simulation (Vehave)

10

Vector
Instr.

emulation

Illegal
instruction

Vector
Instr.

emulation

Illegal
instruction

Vector
Instr.

emulation

Illegal
instruction

Vector
Instr.

emulation

Illegal
instruction

Portability
Vehave requires RISC-V hardware

to run the scalar instructions

Functionality
Vehave only has visibility of vector regions

(i.e. it cannot generate scalar instruction metrics)

Speed
Entering the O.S. on each vector

instruction is expensive

Scalar Instr on Scalar core

Vectorized binary

What is the alternative?

11

Portability
QEMU can run on

your laptop

Functionality
QEMU simulates both scalar and vector,

so it has complete visibility of the application.
We can use Plugins to generate simulation metrics

Speed
QEMU is a lightweight simulator,
and can run on faster systems

At the start of the EPI project, QEMU did not support RVV, but now it does!

Modifications to QEMU

1. Changing the RV_VLEN_MAX parameter in ./target/riscv/cpu.h :
a. By default, it's 1024 bits we change it to 16384 bits (VLEN of EPAC)

12

Modifications to QEMU

1. Changing the RV_VLEN_MAX parameter in ./target/riscv/cpu.h :
a. By default, it's 1024 bits we change it to 16384 bits (VLEN of EPAC)

2. Changing the size of the translation block to 1 instruction:

13

RAVE plugin: RISC-V Analyzer of Vector Executions

- We design a QEMU plugin to profile and analyze the vectorization:

14

Matching Vehave functionalities

- Print the sequence of executed
vector instructions

- For each instruction, report:
- Vector Length (VL) and
- Element Width (8,16,32,64b)
- Length Multiplier (LMUL)
- Used Registers
- ….

- Provide an API called from the
application code

- Create a PRV execution trace

RAVE plugin: RISC-V Analyzer of Vector Executions

- We design a QEMU plugin to profile and analyze the vectorization:

15

Extend them in RAVE

- Count the scalar instructions
between vector ones

- Compute vectorization metrics on
each instrumented block

- Generate a report at the end of the
emulation to summarize these
vector metrics

+

Matching Vehave functionalities

- Print the sequence of executed
vector instructions

- For each instruction, report:
- Vector Length (VL) and
- Element Width (8,16,32,64b)
- Length Multiplier (LMUL)
- Used Registers
- ….

- Provide an API called from the
application code

- Create a PRV execution trace

Vectorization metrics

- We classify all instructions following this diagram:

16

- We derive metrics such as:
- VectorMix = Vector / Total_Instructions
- V. Flop/Byte = Vector.Arith.FP / Vector.Memory

#define SEWS 4
struct qemu_counters{
 double scalar_instr;
 double vsetvl_instr;
 double vector_instr[SEWS];
 double vunit_instr[SEWS];
 double vstride_instr[SEWS];
 double vidx_instr[SEWS];
 double vfp_instr[SEWS];
 double vint_instr[SEWS];
 double vmask_instr[SEWS];
 double velem[SEWS];
};

Controlling the trace with the RAVE API

- Emulation is transparent to applications, so they cannot call RAVE directly

17

Your application

QEMU

Real silicon

Controlling the trace with the RAVE API

- Emulation is transparent to applications, so they cannot call RAVE directly
- RAVE/QEMU only sees simulated instructions

- We must communicate through them…
- … but without changing the program behavior

18

Controlling the trace with the RAVE API

- Emulation is transparent to applications, so they cannot call RAVE directly
- RAVE/QEMU only sees simulated instructions

- We must communicate through them…
- … but without changing the program behavior

19

User Function Instruction Description

rave_start_trace() li x0, -3 After this instruction, tracing is enabled

rave_stop_trace() li x0, -4 After this instruction, tracing is disabled

rave_restart_trace() li x0, -2 Deletes tracing information up to this point

Use instructions writing to x0
(which is hardcoded to 0)

Controlling the trace with the RAVE API

- We also add instrumentation mechanisms, to define regions of interest.
- We work with tuples of Events and Values:

20

Event: Code Region
Values: “Ini”, “Compute”, …

#define SEWS 4
int main(){
 rave_name_event(1000,"Code Region")
 rave_name_value(1000, 1, "Ini")
 rave_name_value(1000, 2, "Compute")

 double array1[256], array2[256], array3[256];

 rave_event_and_value(1000, 1)
 ini_vectors(array1, array2, array3);
 rave_event_and_value(1000, 0)

 rave_event_and_value(1000, 2)
 for(int i=0; i<256; ++i)
 array3[i] += array1[i] + array2[i];
 rave_event_and_value(1000,0)
};

Enclose first region with value 1 (“Ini”)

Define event 1000 = “Code Region”
Value 1 = “Ini”
Value 2 = “Compute”

Enclose second region with
value 2 (“Compute”)

Controlling the trace with the RAVE API

These functionalities are also encoded in instructions writing to x0:

21

User Function Instruction Description

rave_event_and_value(e,v) or x0, src1, src2 event e and value v are read from src1 and src2.

rave_name_event(e,name) and x0, src1, src2 src1 contains the event e, and src2 is equal to -1

li x0, -1
lui x0, name[0],
lui x0, name[1], ...
li x0, -1

The "li x0, -1" instructions mark the beginning and
end of the name, and then a series of lui
instructions encode its characters one by one

rave_name_value(e,v,name) and x0, src1, src2 src1 contains the event e, and src2 contains v

li x0, -1
lui x0, name[0],
lui x0, name[1], ...
li x0, -1

The value name is transmitted using the same
protocol as the event name.

RAVE plugin flow (translation)

For each Instr ∈ translation_block
 disassembly ← qemu_plugin_insn_disas(Instr)
 switch(type(disassembly))

scalar :
 Instr_data ← fill_scalar_struct(Instr)
 Instr → set_callback(vcpu_insn_exec, Instr_data)
vector :
 Instr_data ← fill_vec_struct(Instr)
 Instr → set_callback(vcpu_insn_exec, Instr_data)
API/tracing :
 Function ← tracing_function(Instr)

 Instr → set_callback(Function)
22

enum instr_type{SCALAR, VECTOR, VSETVL};
enum v_major_type{OTHER, ARITH, MEMORY, MASK};
enum v_minor_type{FP, INT, UNIT, STRIDE, INDEX};
struct instr_data{
 uint64_t PC;
 uint32_t paraver_code;
 char * asm_string;
 short dst, src1, src2, src3
 enum instr_type type;
 enum v_major_type v_majortype;
 enum v_major_type v_minortype;
};

Different callbacks for li x0, -1 ,
and x0, src1, src2, etc…

RAVE plugin flow (execution callback)

callback vcpu_insn_exec(Instr_data):
 //Trace and log
 If (Instr_data.major_type == Vector){
 read_cpu_state(VL, SEW)
 log_instruction(Instr_data)
 trace_instruction(Instr_data)
 }
 //counters
 ++total_instructions
 If (Instr_data.major_type == Vector) ++vector_instructions
 If (Instr_data.minor_type == V.Memory) ++vector_mem_instructions
 //(....)

23

RAVE plugin flow (execution callback)

callback vcpu_insn_exec(Instr_data):
 //Trace and log
 If (Instr_data.major_type == Vector){
 read_cpu_state(VL, SEW)
 log_instruction(Instr_data)
 trace_instruction(Instr_data)
 }
 //counters
 ++total_instructions
 If (Instr_data.major_type == Vector) ++vector_instructions
 If (Instr_data.minor_type == V.Memory) ++vector_mem_instructions
 //(....)

24

Evaluating RAVE

We evaluate four setups/environments:

25

Commodity Laptop
(QEMU+RAVE)

High-end AMD node
(QEMU+RAVE)

 Unmatched RISC-V board
(Vehave)

Native execution
(FPGA)

8-core Intel i7-8650U

2.1 GHz

16 GB

12-core AMD Ryzen 5600G

3.9 GHz

32 GB

EPAC RTL on VCU128 FPGA

50 MHz

4 GB

4-core HiFive Unmatched

1.2 GHz

16 GB

Evaluating RAVE: Synthetic Benchmark

We measure the simulation time of a synthetic benchmark
- Increasing ratio of Vec. Instructions per Million total instructions (Scalar+Vec)

26

Evaluating RAVE: Synthetic Benchmark

We measure the simulation time of a synthetic benchmark
- Increasing ratio of Vec. Instructions per Million total instructions (Scalar+Vec)

27

QEMU@AMD outperforms
Vehave beyond 0.015% Vec. Instr
(or 0.005% when logging)

Vehave’s performance
degrades with more Vec.
Instr (more O.S. overhead)

Orders of magnitude
speedup generating a
PRV trace.

Evaluating RAVE: Real Applications

We also measure the simulation time of a real HPC kernels and applications

28

Evaluating RAVE: Real Applications

We also measure the simulation time of a real HPC kernels and applications

29

Graph applications employ
many scalar instructions to
read the graph from disk:
Vehave is faster than QEMU

Compute-Intensive codes
have more vector
instructions, thus QEMU is
faster than Vehave.

In all cases, QEMU
generates PRV traces
much faster..

Evaluating RAVE: Use case

Beside validating the vectorized binary, we can generate Vectorization Traces:

30

Evaluating RAVE: Use case

Use trace insight to improve vectorization:

31

Evaluating RAVE: Use case

You can also obtain vectorization metrics on a console report:

32

your-machine$ rave ./bfs -f graph.el
(...)
Reg. #3: Event 1000(code_region), Value 3(BU)

tot_instr: 38872
 scalar_instr: 15818 (40.69 %)
 vsetvl_instr: 5236 (13.47 %)
 SEW 64 vector_instr: 17818 (45.84 %)
 avg_VL: 255.60 elements
 Arith: 2466 (13.84 %)
 FP: 0 (0.00 %)
 INT: 2466 (100.00 %)
 Mem: 3142 (17.63 %)
 unit: 1573 (50.06 %)
 strided: 0 (0.00 %)
 indexed: 1569 (49.94 %)
 Mask: 8171 (45.86 %)
 Other: 4039 (22.67 %)

your-machine$ rave ./bfs_no_if -f graph.el
(...)
Reg. #3: Event 1000(code_region), Value 3(BU)

tot_instr: 44780
 scalar_instr: 21866 (48.83 %)
 vsetvl_instr: 9556 (21.34 %)
 SEW 64 vector_instr: 13358 (29.83 %)
 avg_VL: 254.77 elements
 Arith: 2481 (18.57 %)
 FP: 0 (0.00 %)
 INT: 2481 (100.00 %)
 Mem: 3028 (22.67 %)
 unit: 1454 (48.02 %)
 strided: 0 (0.00 %)
 indexed: 1574 (51.98 %)
 Mask: 4992 (37.37 %)
 Other: 2857 (21.39 %)

Reduction in Mask and
Other Vec Instructions

Conclusions

- We developed a plugin for QEMU targeting the RISC-V Vector Extension

- We improved simulation framework of the EPI project:
- More accessible
- Faster
- Increased functionality

- RAVE is already being used by performance analysts at BSC

- Future work include:
- Selectively increasing the block size
- Further speeding up the plugin
- More functionalities (multi-core emulation, automatic instrumentation, …)

33

SDV Vector Analysis Using RAVE
Pablo Vizcaino
RISC-V Technical Session, October 10th

The Tutorial code
- Main function : Initialization of 2D arrays and a loop of 10 timesteps
- Each timestep calls:

- Step function : Works on three arrays, “Pressures”, “Temperatures”, and “Volumes”
- ComputeDelta function : Computes convergence of result

- This application is not physically-meaningful but contains common operations:
- Stencils, element-wise matrix operations, reductions, …

35

36

- Introduction to our HPC system.
- Ensure the application runs in RISC-V.
- Code instrumentation and code region study

Running on scalar
commercial

RISC-V boards

Vectorization and
RAVE-emulation
on x86 boards

Natively running
vector code on

the EPAC RTL
(FPGA)

37

Running on scalar
commercial

RISC-V boards

Vectorization and
RAVE-emulation
on x86 boards

Natively running
vector code on

the EPAC RTL
(FPGA)

- Vectorize the application using the compiler capabilities
- Emulation and Tracing with RAVE
- Increasing and optimizing the vectorization

2.2 Running and tracing with RAVE

38

- You can emulate the vectorized binary with RAVE:

- You can also instrument your code and generate reports of RAVE emulations:

- Or generate Parave traces:

laptop$ make reference-vec.x
laptop$ rave ./reference-vec.x

laptop$ make reference-vec-instrument.x
laptop$ RAVE_PRINT_REPORT=1 rave ./reference-vec-instrument.x

Region#38: Event 1000(code_region),Val 2(Temperatures)
 Moved bytes (Total): 2054589
 Moved bytes (scalar): 6589 (0.32 %)
 Moved bytes (vector): 2048000 (99.68 %)
 tot_instr: 210148
 scalar_instr: 194148 (92.39 %)
 vsetvl_instr: 1600 (0.76 %)
 vector_instr: 14400 (6.85 %)
 SEW 64 vector_instr: 14400 (100.00 %)
 avg_VL: 32.00 elements
 Arith: 6400 (44.44 %)
 FP: 6400 (100.00 %)
 Mem: 8000 (55.56 %)
 unit: 8000 (100.00 %)
 strided: 0 (0.00 %)
 indexed: 0 (0.00 %)
 Mask: 0 (0.00 %)
 Other: 0 (0.00 %)

laptop$ RAVE_PRV_NAME=ref-vec rave
./reference-vec-instrument.x

2.2 Running and tracing with RAVE

39

- Open the traces with Paraver:

- Load the configuration files:
 paraver_cfgs/rave/per_phase_cfgs/event_1000_code_region.cfg
 paraver_cfgs/rave/Instruction_timeline.cfg

laptop$ wxparaver ref-vec.prv

Horizontal axis is “vec
instructions”, not “time”

Zoom in!

Zoom in!

Phases Pressures and Volumes
have no vector instructions

2.2 Running and tracing with RAVE

40

- Load the configuration file:
paraver_cfgs/rave/per_phase_cfgs/tables_vector_mix_per_phase.cfg

Temperatures has a
low vector mix (7%)

2.3 Increasing vectorization

41

- We can look at the compiler’s warnings to find out why some phases
are not vectorized:

- The Pressures phase cannot be vectorized due to the cbrt() function call.
- The Volumes phase has a problem with pointers and array bounds.
- For more information on compiler messages, refer to this FAQ

laptop$ make reference-vec.x
src/reference-i.c:20:43: remark: loop not vectorized: call instruction cannot be vectorized
 double length = (volumes[i*M+j]>1.0) ? cbrt(volumes[i*M+j]) : 0.5;
 ^
(...)
src/reference-i.c:40:3: remark: loop not vectorized: cannot identify array bounds
 for(int j=0; j<M; ++j){
 ^
(...)

https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-environment/-/wikis/RVV-and-SDV-FAQ

2.3 Increasing vectorization (Pressures)
- We can separate vectorizatiable and non-vectorizable work into two loops:

42

17 trace_event_and_value(1000,1);
18 for(int i=0; i<N; ++i){
19 for(int j=0; j<M; ++j){
20 double length = (volumes[i*M+j]>1.0) ? cbrt(volumes[i*M+j]) : 0.5;
21 pressures[i*M+j] = length + (temperatures[i*M+j]-new_temperatures[i*M+j]);
22 }
23 }

trace_event_and_value(1000,1);
for(int i=0; i<N; ++i){
 for(int j=0; j<M; ++j){
 pressures[i*M+j] = (volumes[i*M+j]>1.0) ? cbrt(volumes[i*M+j]) : 0.5;
 }
}
trace_event_and_value(1000,5)
for(int i=0; i<N; ++i){
 for(int j=0; j<M; ++j){
 pressures[i*M+j] += (temperatures[i*M+j]-new_temperatures[i*M+j]);
 }
}

This loop will not vectorize

This loop will vectorize

 const char * v_names[]={"Other","Pressures_cbrt","Temperatures",
 "Volumes","Delta","Pressures_vec"};
 int values[] = {0,1,2,3,4,5};
 trace_name_event_and_values(1000,"code_region",6,values,v_names);

Added a new region!

2.3 Increasing vectorization (Volumes)
- The compiler “cannot identify array bounds”.

- This means the compiler cannot assert the aliasing of the arrays/pointers.
- It normally occurs with indirected accesses

- It can be solved using a #pragma or declaring your array pointers as restrict

43

void Step(int N, int M, double * volumes, double * pressures,
 double * temperatures, double * new_temperatures,
 int BLOCK_DIM_X, int BLOCK_DIM_Y, int * bounds){

void Step(int N, int M, double * restrict volumes, double * restrict pressures,
 double * restrict temperatures, double * restrict new_temperatures,
 int BLOCK_DIM_X, int BLOCK_DIM_Y, int * restrict bounds){

39 for(int i=0; i<N; ++i){
40 for(int j=0; j<M; ++j){
41 volumes[i*M+j] = pressures[bounds[i*M+j]] * new_temperatures[i*M+j];

2.3 Increasing vectorization (Temperatures)
- The compiler does complain, and the aren’t weird accesses or function calls
- We can make the loop more compiler-friendly with these three tricks:

- Change the induction variables type from int to long
- Add the #pragma clang loop vectorize(assume_safety) on top of the vectorizable loop

(or make pointers restrict)
- Move constant loop bounds known at compile time to defines (e.g. Block sizes)

44

#define BLOCK_DIM_X 32
#define BLOCK_DIM_Y 32
void Step(int N, int M, double * restrict volumes, double * restrict pressures, double
* restrict temperatures, double * restrict new_temperatures, int * restrict bounds){
 //(...)
 for(long block_i=1; block_i<N-BLOCK_DIM_Y; block_i+=BLOCK_DIM_Y){
 for(long block_j=1; block_j<M-BLOCK_DIM_X; block_j+=BLOCK_DIM_X){
 for(long i=block_i; i<block_i+BLOCK_DIM_Y; ++i){
 #pragma clang loop vectorize(assume_safety)
 for(long j=block_j; j<block_j+BLOCK_DIM_X; ++j){
 new_temperatures[i*M + j] = 0.25*(temperatures[M*i + j + 1]
 + temperatures[M*(i+1) + j]
 + temperatures[M*i + (j-1)]
 + temperatures[M*(i-1) + j]);

2.3 Increasing vectorization

45

- Compile and trace the improved version SDV_Tutorial/src/increase-vec.c

- Open the traces with Paraver:

- Load paraver_cfgs/rave/per_phase_cfgs/tables_vector_mix_per_phase.cfg

laptop$ make increase-vec.x
laptop$ RAVE_PRINT_REPORT=1 RAVE_PRV_NAME=inc-vec rave ./increase-vec.x

laptop$ wxparaver inc_vec.prv

Only the non-vectorizable
Pressures_cbrt phase does
not have vector instructions

Pressures_vec reports
good vector metrics

- Load paraver_cfgs/rave/per_phase_cfgs/table_average_vl_per_phase.cfg

2.4 Increasing the Vector Length

46

Average Vector Length
(Bytes) in all phases far
from 2048 Bytes/Vector
(maximum in EPAC)

Vector Length (Bytes)
per instruction varies
a lot in Volumes and
Delta.

2.4 Increasing the Vector Length
- The vector length is limited by the bounds of the inner-most loops.
- In this code, inner-most loops go from j=0 to j=M-1, with M=162
- With double-precision data (64 bits), EPAC’s vectors support up to 256 elems.

- The efficiency of the vector instructions grow with the vector length

- Solution: Increase inner-most loops bounds (collapsing loops)

47

for(int i=0; i<N; ++i){
 for(int j=0; j<M; ++j){
 // Matrix[i*M + j] …
 }
}

#define ROWS 2
for(int i=0; i<N; i+=ROWS){
 for(int j=0; j<M*ROWS; ++j){
 // Matrix[i*M + j] …
 }
}

for(int ij=0; ij<N*M; ++ij){
 // Matrix[ij] …
}

One row at a time X (e.g., 2) rows at a time All rows at a time (collapsing)

2.4 Increasing the Vector Length
- We apply collapsing to phases Pressures_vec, Volumes, Delta.

- Phase Temperatures presents a blocking structure.
- Normally intended to improve cache usage or vectorization on smaller extensions.

- Cannot collapse loops because edge elements should not be accessed in
the stencil.

- We can increase the inner-most block size (bx) to match the columns’ width
to increase the vector length:

48

2.4 Increasing the Vector Length

49

- Compile and trace the improved version SDV_Tutorial/src/increase-vl.c

- Open the traces with Paraver:

- Load paraver_cfgs/rave/per_phase_cfgs/table_average_vl_per_phase.cfg

laptop$ make increase-vl.x
laptop$ RAVE_PRINT_REPORT=1 RAVE_PRV_NAME=inc-vl rave ./increase-vl.x

laptop$ wxparaver inc-vl.prv

Average Vector Length
closer to 2048 Bytes/Vector
(maximum in EPAC)

Temperatures increased
from 256 to 1280

- Load paraver_cfgs/rave/per_phase_cfgs/table_instruction_type_count_per_phase.cfg

2.5 Avoid mixing datatypes

50

Two high-latency
instructions
detected in Volumes

slide and vw* instructions
often appear when mixing
datatypes.

1

Refer to the last slide (Annex) for latency estimates of vector instructions1

2.5 Avoid mixing datatypes
- Phase 3 uses an array of integers to index an array of doubles:

- We recommend parameterizing the datatypes,
to experiment with different sizes:

- Solution in SDV_Tutorial/src/flex-datatype.c. Compile it and trace it:

- Copy the traces back to your computer and open them in Paraver:

51

volumes[ij] = pressures[bounds[ij]] * new_temperatures[ij];

double (64b) int (32b)double (64b) double (64b)

typedef double T_FP; //64b
typedef long long T_INT; //64b

laptop$ make flex-datatype-i-vehave.x
laptop$ RAVE_PRINT_REPORT=1 RAVE_PRV_NAME=flex rave ./flex-datatype-i-vehave.x

laptop$ wxparaver flex.prv

- Load paraver_cfgs/rave/per_phase_cfgs/table_instruction_type_count_per_phase.cfg

2.5 Avoid mixing datatypes

52

slide and vw* instructions no
longer present on Volumes

vsetvli instructions
reduced from 13k to 2k

53

Running on scalar
commercial

RISC-V boards

Vectorization and
RAVE-emulation
on x86 boards

Natively running
vector code on

the EPAC RTL
(FPGA)

- Get time measurements
- Generate Extrae traces
- Further optimize the performance

3.1 Sending jobs to the FPGA nodes
- You can send binaries to the FPGA using the SLURM queue manager and the

fpga_job jobscript.

- Use the run_all.sh script to run all versions and parse their outputs:

- You can query the state of an FPGA job using the squeue command:

54

synth-hca$ sbatch fpga_job ./run_all.sh
Submitted batch job 189294

synth-hca$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 189294 fpga-sdv fpga_job user R 0:21 1 pickle-1

Job is running

3.1 Sending jobs to the FPGA nodes
- When the job finishes, you can read its output file:

55

synth-hca$ cat slurm-189294.out

* x86 node: pickle-1
* SDV node: fpga-sdv-1

bash: warning: setlocale: LC_ALL: cannot change locale (en_US.UTF-8)
/bin/bash: warning: setlocale: LC_ALL: cannot change locale (en_US.UTF-8)

version time_per_iteration
reference.x 133090.00
reference-vec.x 71180.30
increase-vec.x 42096.10
increase-vl.x 32437.30
flex-datatype.x 31570.70

1.86x speedup

4.22x speedup

3.2 Getting Extrae traces in the FPGA nodes
- We recommend using Extrae to trace the binaries running in the FPGA, but

there are other methods (like PAPI), described in this guide.

- Send an Extrae job to the FPGA using the trace_extrae_fpga script:

- When the job finishes, copy the traces back to your machine and open them
in Paraver

56

synth-hca$ sbatch fpga_job trace_extrae_fpga ./flex-datatype.x

your-machine$ rsync -a user@ssh.hca.bsc.es:~/SDV_Tutorial/extrae_prv_traces .
your-machine$ wxparaver ./extrae_prv_traces/fpga-flex-datatype.prv

https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-environment/-/wikis/Tracing-and-Hardware-Counters

- The configuration file paraver_cfgs/extrae/PerfMetrics.cfg computes
these vector metrics:

1. Vector Mix:

2. Vector Activity:

3. Vector CPI:

3.2 Getting Extrae traces in the FPGA nodes

57

#Vec. Instr

#Tot. Instr

#Vec. Cyc

#Tot. Cyc

#Vec. Cyc

#Vec. Instr

0.0 0.2 1.0GoodBad

0.0 0.8 1.0GoodBad

0 60 150
Good for Arithmetic-Intensive

30

Good for Memory-Intensive

Good for Indexed memory

Bad

- Load the configuration file paraver_cfgs/extrae/PerfMetrics.cfg

3.2 Getting Extrae traces in the FPGA nodes

58

Most of the time is spent
in Pressures_cbrt and
Volumes regions

All phases have a good
VecMix and VecActivity

Volumes has a
high VecCPI

Avg Cycles per Phase

Vector Mix

Vector Activity

Vector CPI

3.3 Using huge pages
- When a region with indexed/indirect access (like Volumes) has a large VecCPI

it might be a TLB issue:
- The vector elements might be accessing more pages than there are entries in the TLB.

- The solution is to let the OS use huge pages (2MB) instead of 4KB pages.
- You can use the script in huge_pages to execute your binary with huge pages.

- You can send an Extrae job using huge pages like this:

- When the job finishes, copy the traces back to your machine and open them

59

synth-hca$ sbatch fpga_job huge_pages run_extrae_fpga ./flex-datatype.x

your-machine$ rsync -a user@ssh.hca.bsc.es:~/SDV_Tutorial/extrae_prv_traces .
your-machine$ wxparaver ./extrae_prv_traces/flex-datatype.x-huge.prv

- Load the configuration file paraver_cfgs/extrae/PerfMetrics.cfg

3.3 Using huge pages

60

Volumes reduced its
average duration from
410k cycles to 175k

Volumes reduced its
VecCPI from >300 to 130

Avg Cycles per Phase

Vector Mix

Vector Activity

Vector CPI

Conclusions
- Improvement across versions:

- Using the SDV methodology we achieved a 5x speedup on the application

- Most of the time is spent on non-vectorized code

61

%Time per Phase
Future improvements
should focus on
vectorizing Pressures_cbrt

This research has received funding from the European High Performance Computing Joint Undertaking (JU) under
Framework Partnership Agreement No 800928 (European Processor Initiative) and Specific Grant Agreement No
101036168 (EPI SGA2). The JU receives support from the European Union’s Horizon 2020 research and innovation
programme and from Croatia, France, Germany, Greece, Italy, Netherlands, Portugal, Spain, Sweden, and Switzerland.
The EPI-SGA2 project, PCI2022-132935 is also co-funded by MCIN/AEI /10.13039/501100011033 and by the UE
NextGenerationEU/PRTR.

62

Acknowledgment

Don’t hesitate to contact me at pablo.vizcaino@bsc.es !

mailto:pablo.vizcaino@bscs.es

