Contents

Run RISC-V Vectorial application step by step 1
Prepare the environment L L e e e e e e e e 1
Compile QEMU (tested on Ubuntu 16.04 and 20.04) v i v i i it e e e 2
Download fedora L e e e e e e e e e e e e e 2
Createashared folder e e e e e e e e 2
Download RISC-V BSC-to0lS o . o e e e e e e e e e e e e e e 2

Boot Fedora and mountthe sharedfolder o o 3
Compile and run an application using the vectorextension 4
Download and build asimpleexample 4

Prepare and build your kernels/applications 4

Run a binary emulating vector instructions L oo 5
SIMULAte Traces o v e 5
Step 0: Download and install MUSA e e e e e 5

Step 1: Configure the simulation e 6

Step 1: Runthe simulation e e e e e 6
ANnalyze traCes o o e 6
Download Paraver (0N X86 SYStEM) v i i i e e e e e e e e e e e e e 6

OpeN atrace i e 6

Test case 7
Paraver analySis e e e e e e e e e e e e e e e e 7

Run RISC-V Vectorial application step by step

Prepare the environment

The following diagram represents the workflow of this environment. We will guide you with the setup of the virtual
machine and the usage of the tools used to execute riscv codes.

RISCV X86
virtual machine Host machine

A
— Compile Emulate face] 5| Convert trace Simulate
to Paraver
Paraver
LLVM Vehave Vehave2prv

Excel

Figure 1: Demo_epi_future

Throughout this guide you will find many code snippets. The prompt of each command tells in which host the
command is executed.

e O S

(8]

o B W N

+ If the prompt is x86% the command is executed in your x86 laptop or server;

« If the promptis riscv$ the command is executed inside gemu virtual machine.

Compile QEMU (tested on Ubuntu 16.04 and 20.04)

First, get the following packages:

x86% sudo apt-get install build-essential pkgconf 1ibglib2.0-dev libpixman-1-dev
libcap-ng-dev libattr1-dev

After that, install QEMU (tested version 5.0.1). Change ${QEMU_INSTALLDIR} for your desired installation path.

x86% wget https://download.gemu.org/qemu-5.0.1.tar.xz

x86% tar xf qemu-5.0.7.tar.xz

x86% cd gqemu-5.0.1

x86% ./configure --enable-virtfs --target-list=riscv64-softmmu --prefix=${
QEMU_INSTALLDIR}

x86% make -j8

x86% make install

x86% cd

Download fedora

x86% wget https://ssh.hca.bsc.es/epi/ftp/vm/Fedora-Developer -Rawhide-20200108.n.0-
fw_payload-uboot-gqemu-virt-smode.elf

x86% wget https://ssh.hca.bsc.es/epi/ftp/vm/Fedora-Developer -Rawhide -20200108.n.0-
sda.raw.xz

x86% unxz Fedora-Developer -Rawhide -20200108.n.0-sda.raw.xz

Create a shared folder

We create a folder that can be accessed from inside the virtual machine. If you create a file inside the virtual

machine, you can open or modify from your native filesystem and vice versa.

x86% mkdir shared_folder
x86% cd shared folder

Download RISC-V BSC-tools

Vehave

x86% wget https://ssh.hca.bsc.es/epi/ftp/vehave-EPI-0.7-development-latest.tar.bz2
x86% tar xf vehave-EPI-0.7-development-latest.tar.bz2

x86% rm vehave-EPI-0.7-development-latest.tar.bz2

1lvm-EPI toolchain

7 x86% wget https://ssh.hca.bsc.es/epi/ftp/11lvm-EPI-0.7-development-toolchain-native-
latest.tar.bz2

8 x86% tar xf 1lvm-EPI-0.7-development-toolchain-native-latest.tar.bz2

9 x86% rm 1lvm-EPI-0.7-development-toolchain-native-latest.tar.bz2

10

11 x86% cd

Boot Fedora and mount the shared folder

To boot fedora, execute the following command, changing ${QEMU_INSTALLDIR} with the path where you installed
QEMU on the first step.

1 x86% ${QEMU_INSTALLDIR}/bin/qemu-system-riscv64 \

2 -daemonize \

3 -machine virt \

4 -smp 4 \

5 -m 4G \

6 -virtfs local,path=shared_folder ,mount_tag=host®,security_model=passthrough,id=
host0 \

7 -kernel Fedora-Developer -Rawhide-20200108.n.0-fw_payload-uboot-gemu-virt-smode.
elf \

8 -object rng-random, filename=/dev/urandom,id=rng@ \

9 -device virtio-rng-device,rng=rngd \

10 -device virtio-blk-device,drive=hd@ \

1 -drive file=Fedora-Developer -Rawhide -20200108.n.0-sda.raw, format=raw,id=hd@ \

12 -device virtio-net-device,netdev=usernet \

13 -netdev user,id=usernet,hostfwd=tcp::10000-:22

14

15 qemu-system-riscv64: warning: No -bios option specified. Not loading a firmware.

16 gemu-system-riscvbo4: warning: This default will change in a future QEMU release.
Please use the -bios option to avoid breakages when this happens.

17 gemu-system-riscv64: warning: See QEMU's deprecation documentation for details.

18 [...]

If you get the error message could not read keymap file: 'en-us', replace the flag -daemonize for the flag -
nographic.

You also may get some warnings that you can disregard.
Once the boot has finished, open another terminal and ssh into the machine
1 x86% ssh -p 10000 -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no
riscv@localhost
+ Userriscv
- Password fedora_rocks!

After you have logged in for the first time, upgrade the system and mount the shared folder.

Note: the upgrade can take hours, depending on your system

S U P W N

Upgrade package of Linux distribution

riscv$ sudo dnf upgrade

Create mounting point for shared_folder

riscv$ sudo mkdir /shared_folder

Mount shared_folder

riscv$ sudo mount -t 9p -o trans=virtio host® /shared_folder/ -oversion=9p2000.L

Compile and run an application using the vector extension

In this section, we present an example of how to compile and run a vectorized kernel step by step. If you want to
skip this part and try a complete test-case that is run with a script that we provide, jump to the last section of this
document.

Download and build a simple example

First, download a basic matrix multiplication kernel that we provide.

riscv$ wget https://ssh.hca.bsc.es/epi/ftp/example/riscv_example.tar.gz
riscv$ tar -xzf riscv_example.tar.gz

Then, compile it using the Makefile:

riscvd cd matmul
riscv$ make

Prepare and build your kernels/applications

In order to adapt your code, to use vector instructions we can proceed in two different ways:

« Auto-Vectorization. For example:

1 static void matmul(int n, double (*c)[n], double (*a)[n], double (*b)[n]) {

2 for (int i = @; i < n; i++) {

3 for (int j = 0; j < n; j++) {

4 #pragma clang loop vectorize(enable)
5 for (int k = 0; k < n; k++t) {

6 c[il[j] += alillk] * b[kI[j1;
7}

8 }

9 }

10 }

« Intrinsics. For example: “/c void axpy_intrinsics(double a, double dx, double dy, int n) { int i;

long gvl = __builtin_epi_vsetvl(n, __

epi_e64, __epi_m1); __epi_1xf64 v_a = __builtin_epi_vbroadcast_1xf64(a, gvl);

for(i=0;i<n;){gvl=__builtin_epi_vsetvl(n - i, __epi_e64, __epi_m1); __epi_1xf64v_dx = __builtin_epi_vload_1xf64(&dxl[il,
gvl); __epi_1xfe4 v_dy = __builtin_epi_vload_1xfe4(&dylil, gvl); __epi_1xfé4 v_res = __builtin_epi_vfmacc_1xf64(v_dy,

) —_—

! —_—

-

S W N

v_a, v_dx, gvl); __builtin_epi_vstore_1xf64(&dyl[il, v_res, gvl); i += gvl; } } “
If you like to write/compile your vector codes using the EPI intrinsics, the reference is here.

Run a binary emulating vector instructions

Now you are ready to execute the kernel, following this procedure: (If you want to run your binary change ./matmul
to ./your_binary)

riscv$ export VEHAVE_TRACE_SINGLE_THREAD=1

Set simulator vector length to 16384 bits(same Testchip). Feel free to change
other values.

riscv$ export VEHAVE_VECTOR_LENGTH=16384

Run using vehave emulator; VEHAVE_TRACE_FILE define the name of output trace;
VEHAVE _DEBUG_LEVEL define verbosity possible values {0,1,2}

riscv$ VEHAVE DEBUG_LEVEL=0 VEHAVE_TRACE FILE=matmul.trace /shared_folder/vehave -
EPI-0.7-development -2020-12-01-2200/bin/vehave ./matmul

riscvd mv matmul.trace /shared_folder/.

This will generate a file called matmul.trace, containing information about the execution of the vector instructions.

Move this trace to the shared folder to study it outside the virtual machine.

Outside the virtual machine, convert it to a Paraver-compliant file with the following command:

x86% shared_folder/vehave-EPI-0.7-development-2020-12-01-2200/share/vehave2prv/
vehave2prv matmul.trace

Note: vehave2prv also works inside the virtual machine, but it is recommended to run it outside since it will be faster.

For more information about Vehave look in this wiki

If you have any trouble with the Vehave tools, contact sdv-support@bsc.es.

Simulate traces

MUSA is a tool that simulates the vehave trace in a parameterizable machine, where the user can specify a set of
parameters such as the memory bandwidth, the size and shape of the cache and the number of instructions being
executed at the same time, among many other parameters.

Step 0: Download and install MUSA

x86% cd shared_folder

x86% wget https://ssh.hca.bsc.es/epi/ftp/musa_redistributable.tar.gz
x86% tar -xvf musa_redistributable.tar.gz

x86% cd musa_redistributable

x86% ./install.sh

x86% cd

https://repo.hca.bsc.es/gitlab/EPI/System-Software/llvm-project/-/wikis/EPI-vectors-builtins-reference-0.7
https://repo.hca.bsc.es/gitlab/EPI/System-Software/llvm-project/-/wikis/vehave-user-guide

Step 1: Configure the simulation
The file musa_redistributable/tasksim/etc/conf/riscv_reference.conf contains the parameters of the simula-
tion. You can leave them unchanged, but feel free to experiment with them and study their effect on the simulation.

For riscv, only the first level of cache and the main memory are used in the simulation. Other cache levels are
ignored.

For more information about the tool and its parameters, contact sdv-support@bsc.es.

Step 1: Run the simulation

MUSA requires the input trace consisting of three files, .prv .row .pcf thatwe previously generated with vehave2prv.
After running, it generates an output trace.
To run the simulation, run this command adjusting the paths to your environment.

1 # Usage: musa_redistributable/tasksim/bin/tasksim.sh <tasksim_config_file> <
output_trace> <trace>

2 x86% musa_redistributable/tasksim/bin/tasksim.sh musa_redistributable/tasksim/etc/
conf/riscv_reference.conf matmul_sim matmul

Where:

+ The input traces must be named matmul.prv matmul.pcf matmul.row (last argument)
+ The output traces will be named matmul_sim.prv matmul_sim.pcf matmul_sim.row(second to last argument)

+ Afile named matmul_sim.stats will be generated with information about the simulation

Analyze traces

There are two main ways to analyze the traces generated by the simulator. The simpler way consists of looking at
the information saved in the .stats file.

The other way uses BSC's tool Paraver. It can analyze either initial or simulated traces, outside the QEMU virtual
machine.

Download Paraver (on x86 system)

1 x86% wget https://ftp.tools.bsc.es/wxparaver/wxparaver-4.9.0-Linux_x86_64.tar.bz2
2 tar xf wxparaver-4.9.0-Linux_x86_64.tar.bz2

Open a trace

1 x86% ./wxparaver-4.9.0-Linux_x86_64/bin/wxparaver matmul_sim.prv

a & W N -

—_

—_

Test case

We have prepared an easy to use example to show the potential of these tools. This example runs a vectorized
matrix multiplication kernel of size 64x64 two times, with two different maximum vector lengths (16 and 32), and
then simulates the effect of various cache sizes.

It could run with bigger matrixs and vectors, but running in a virtual environment is slow and the intent of this test
is to be an initial and fast approach to the environment.

First, run You can execute it with the following commands inside the QEMU virtual machine. It can take around 10
minutes to finish all the simulations.

riscv$ cd /shared_folder

riscv$ wget https://ssh.hca.bsc.es/epi/ftp/example/riscv_example.tar.gz
riscv$ tar -xzf riscv_example.tar.gz

riscv$ cd matmul

riscv$./execute.sh

After the script ends, a new folder called study will be generated. Inside, one can find another folder with the
vehave traces.

To study the traces, exit the virtual machine and execute the file study.sh in the same folder in your x86 host. This
will run various simulations with different cache sizes.

x86% cd shared folder/matmul
x86% ./study.sh

The simulates traces and their .stats are located inside the study folder. There’s also a file named cycles.csv
containing the number of cycles for each (vector length,cache size) configuration.

We also provide a gnuplot script to visualize this csv, doing the following command:

x86% gnuplot plot.gnp

This will generate an image called study.png that should resemble this one:

The scripts provided can be relatively easily adapted to fit your necessities with other programs. We encourage you
to change them for your tests and email us with additional questions.

Paraver analysis

We provide some Paraver configuration files that can be useful for analyzing RISCV-V traces. They can be downloaded
with the following command:

x86% wget https://ssh.hca.bsc.es/epi/ftp/cfg/example_cfgs.tar.gz

We included these configuration files:
« instruction_type.cfg: Shows the number of instructions of each type.

« PC.cfg: Shows the Program Counter of each instruction.

maxVL 16 —&— maxVL 32 —&—

2.50 . I
.. r—
2.00 —
o it = :
By =)
E 1.50 | 3
L
- 1.00
iJ [= o —
O s]
0.50 -
0.00 ' '
128 256 512 1024 2048 4096

Cache 5ize [KB]

Figure 2: plot

« VL.cfg: Shows the vector length used by each instruction.
+ bytes.cfg: Shows the total number of bytes (assuming data types of 64 bits) loaded and stored.

« Hit_and_miss.cfg : Shows the hit and miss ratio of the L1 cache for each type of memory instruction,
alongside the total accesses to L1 and Memory lines.

« timing_model.cfg: Shows the average and total latency per instruction and the number of cycles of the

execution.

It's important no note that the last two cfgs only work with simulated traces.

	Run RISC-V Vectorial application step by step
	Prepare the environment
	Compile QEMU (tested on Ubuntu 16.04 and 20.04)
	Download fedora
	Create a shared folder
	Download RISC-V BSC-tools
	Boot Fedora and mount the shared folder

	Compile and run an application using the vector extension
	Download and build a simple example
	Prepare and build your kernels/applications
	Run a binary emulating vector instructions

	Simulate traces
	Step 0: Download and install MUSA
	Step 1: Configure the simulation
	Step 1: Run the simulation

	Analyze traces
	Download Paraver (on x86 system)
	Open a trace

	Test case
	Paraver analysis

