
MUSA-RISCV  processor  model  and
its architecture parameters
This document describes the architectural parameters that the MUSA-RISCV model uses to describe
the architecture it simulates (Section 1), the instruction latency format it uses to compute the duration
of non-memory operations (Section 2), the pipeline processor model it implements (Section 3), and the
additional events the MUSA-RISCV model adds in the output Paraver trace (Section 4).

1. Architecture Parameters  

1.1 CPU section

 cpu_frequency: frequency in MHz of the simulated CPU (affects interaction with DRAM).
 available_regs: number of available physical vector registers. The RISC-V ISA specification

requires 32 logical registers, so values < 32 might cause the simulation to fail. available_regs =
0 means unlimited registers; available_regs =-1 means there is no renaming. The EPI EPAC has
40 physical  registers,  although high-performance computing  machines  have  typically  much
more. For example. the NEC SX-Aurora VE has 192 physical registers.

 register_file_length: throughput of the vector functional units file, in bits/cycle. The EPI SDV
designs has a throughput of 512-bits / cycle, which means eight double precision lanes.

 rob_size: reorder  buffer size,  in terms of vector instructions.  The EPI SDV has an 8-entry
reorder buffer for vector instructions.



 issue_rate: maximum number of instructions the CPU can be issue every cycle. The EPAC has
an issue rate of 1.

 commit_rate: maximum number of instructions the CPU can commit every cycle. The EPAC
has a commit rate of 1.

 vector_units: it limits the maximum number of vector instructions that run in the functional
units  at  the  same  cycle.  Some  instruction  types  need  exclusive  use  of  the  vector  unit  a
determined number of cycles (see the instruction latency section). Simulating a single vector
unit implies setting this parameter to 1.

 vector_instruction_limit: it limits the number of vector instructions that can be inside the ROB
any given time (0: not limited). This an experimental option to limit non-memory instructions,
we recommended setting it to 0.

 latency_starts_at_submit: it defines whether the processor pays instructions startup latency at
submit or at decode stages. The latency format file, which Section 2 describes, defines startup
latency.  It  is  a  Boolean  parameter.  By  default  latency  starts  to  be  paid  at  decode,  that  is,
latency_starts_at_submit = 0 by default.

1.2 CPU-to-memory section

 num-ports: number of requests that can be sent every cycle to L1Cache, also the number of
ACKs that can be received every cycle. Typically, there is 1 port.

 request-size: maximum size in Bytes of the requests to memory. This value is typically set to
64Bytes in common architectures.

 merge_memory_operations: it allows discarding vector stores operations. When a subsequent
store contains their same memory address range, and vector loads when a previous load/store
contains  it.  It  is  a  Boolean  parameter.  By  default  it  is  enabled,  that  is,
merge_memory_operations = 1 by default.

 send_stores_when_ready: it  allows  submitting  store  vector  operations  once  they  become
ready. Otherwise, they are submitted when they are at the head of the reorder buffer. It is a
Boolean parameter, By default, it is enabled, that is, send_stores_when_ready = 1.

 retire_stores_on_submission: it  allows removing stores  from the reorder  buffer  once their
memory requests have been sent, without waiting for the acknowledgment from memory. It is a
Boolean parameter. It is enabled by default, that is, retire_stores_on_submission = 1by default.

 strided_merge_limit: it defines the maximum stride for which the requests of a strided load or
strided store are merged into one request per  cache line. The default value is set to 4. This
parameter  impacts  accesses  triggered  by  the  same  instruction  and  it  is  independent  of  the
merge_memory_operations parameter.

 issue_memory_operations_in_order: a Boolean parameter that forces memory instructions to
be executed in-order. Setting this parameter to 0 lets memory instructions to be executed out-of-
order. Be default, the parameter is set to 0.

 allow_non_cacheable:  it allows the generation of requests that will not store the data in the
L1Cache. Similar to what  non-temporal hints do in other architectures. Its default value is 0.
Section 1.5 describes how to create the lists required by parameters 2-5, 7-10.

o 0: Everything is cached.
o 1: Nothing is cached.
o 2: Listed ADDRs are non cached.
o 3: Listed PCs are non cached.
o 4: Listed ADDRs are cached.
o 5: Listed PCs are cached.
o 6: Region reuse predictor.



o 7: Multiperspective reuse predictor + List of cached ADDRs.
o 8: Multiperspective reuse predictor + List of cached PCs.
o 9: Multiperspective reuse predictor + List of bypassed ADDRs.
o 10: Multiperspective reuse predictor + List of bypassed PCs.
o 11: Source-code instructions reuse predictor.

1.3 Cache section

 mshr: it defines the number of concurrent outstanding requests that the Cache can handle at any
given time. For the case of the EPI EPAC, its value is 32.

 level: it defines the level of the cache (for output statistics purposes). It starts at 1. The cache
hierarchy can have a generic number of levels.

 num-ports: it sets the number of requests that can be sent to the next memory level each cycle.
The value should typically be set 1.

 latency: it defines the latency in cycles of the cache. A typical 32KB L1 should have from 1 to
4 cycles latency. The L2 cache of EPAC has 40 cycles latency.

 size: it sets the cache size in bytes. EPI L2 cache has 262144 Bytes per vector unit.
 line-size: it defines the cache line size in bytes. Its value is typically 64 Bytes.
 assoc: it defines the cache associativity. The L2 cache associativity is 8.
 victim-lines: it sets the size of the victim cache in lines. We recommend setting it to 0.
 policy: it defines the name of the cache replacement policy. We recommend to set it to LRU,

that is, policy= LRUPOLICY. All supported policies are LRU, NRU, Random. To use them, just
set policy=XPOLICY where X={LRU, NRU, Random}.

 tlb_size: it represents the number of entries for the TLB. The simulator reports TLB hits and
misses,  but  it  does  not  apply  any  performance  penalty  for  the  later.  As  such,  the  TLB
configuration does not influence performancs. Its default value is 4096.

 tlb_page_size: it represents the TLB page size in Bytes. Its default value is 4096. Like the other
TLB-related parameters, it does not influence performance.

 tlb_associativity: it represents the TLB cache associativity. Its default value is 4.

1.4 DRAM Section

 bandwidth: maximum DRAM bandwidth [bytes/s].
 request-size: request size in bytes.
 latency: single request latency in nanoseconds.

This is a very simplified model, which only accepts bandwidth and request latency as parameters. To
achieve that maximum bandwidth the number of requests is limited to:

max_requests = bandwidth * latency / (request-size * 10^6 *cpu_frequency)

The 10^6 is added to cancel the units as the cpu_frequency is input in MHz ([bytes/s] * [ns] / ([bytes]
10^6*[MHz])).

The simulator supports more complex DRAM models than the 3-parameter model described above.
These  complex  DRAM  models  are  based  on  RAMULATOR  and  DRAMSim.  Please,  contact
marc.casas@bsc.es or francesc.martinez@bsc.es to figure out how to use these more complex models.

mailto:marc.casas@bsc.es
mailto:francesc.martinez@bsc.es


1.5 Parameters describing some aspects of the simulator behavior:

 latency_file: instruction latency file location (Section 2 describes its format).
 detail_mode: CPU simulation mode (always use ‘RISCV’).
 deadlock_detection_interval: interval between each inactivity check. Expressed in cycles. We

recommend to set it to 1000000.
 detail_mode: must be set to “RISCV” when simulating RISCV traces.
 flush_final_trace:  This parameter allows generating the output trace as the simulation runs.

When disables, the whole trace is stored in memory until the simulation ends. We recommend
setting this parameter to 1 when dealing with large paraver traces.

 disable_paraver_trace: It allows disabling the emission of the output paraver trace.
 generate_reuse_trace: generates an output trace describing the reuse behavior of all instruction

PCs  and  addresses.  It  can  be  used  as  a  guide  to  generate  the  lists  driving  some  of  the
allow_non_cacheable configurations.

 params: contains the path of the file with the list of addresses/PCs needed for options [2-5] and
[7-10] of allow_non_cacheable.

1. Instruction latency format  
The  instruction  latency  file  contains  a  list  of  instructions  and,  for  each  instruction.  It  defines  the
following parameters:

 opcode: It defines the instruction type. For example, “vadd”.
 startup_latency:  It  defines  the  value  of  instructions  startup  latency in  cycles.  This  startup

latency  is  typically  paid  once  the  instruction  in  inserted  in  the  ROB,  although  parameter
although parameter latency_starts_at_submit defines when startup latency paid.

 scaling_factor: It is a coefficient that multiplies the GVL * SEW / RFL ratio.

Each instruction belongs to one of the four categories described below. These categories define the
model the simulator uses to compute the total latency of the instruction. The simulator uses parameters
like instructions granted_vector_length (GVL), single_element_width (SEW), and FP units throughput
(called register_file_length - RFL) to compute the total latency.

 ALU_FP_INST: For the instructions belonging to this category, the startup_latency does not
require the use of a vector functional unit. Scaling latency  (scaling_factor * GVL * SEW /
RFL)  is  paid  once  the  instruction  is  submitted  to  the  FP functional  units  and  it  requires
exclusive use of a vector functional unit.

 ALU_FP_INST_NON_BLOCKING: For the instructions belonging to this category, neither
the startup latency, not the scaling latency, requires the use of vector functional units.

 ALU_NON_FP_INST:  These  instructions  have  a  startup  latency  of  0  cycles.  The  total
instruction latency (scaling_factor * GVL * SEW / RFL) does not need the exclusive use of a
vector unit.

 NON_ALU_INST: These instructions have a constant latency defined by the startup_latency
parameter. They do not need the exclusive use of a vector unit.



1. Pipeline Processor Model.  
The pipeline model that MUSA RISC-V implements requires all instructions go through the decode,
ready,  submit,  complete  and  commit  steps.  Along  these  steps,  the  simulator  generates  the  events
decode_cycle,  ready_cycle,  submit_cycle,  complete_cycle and  commit_cycle  and adds them to the
output Paraver trace when the instruction finishes executing.

 An instruction is decoded when there is an empty entry in the reorder buffer (decode_cycle).
 First, we check that all its input dependencies have been computed, otherwise we wait.
 When the input dependencies are ready, if it is a memory instruction we check for dependencies

with  the  other  memory  instructions  in  the  reorder  buffer  (cf.  Section  3.3   memory
dependencies).

 We check that whether there is an empty register to write the result (for non store instructions)
(ready_cycle).

 At this point the handling of memory and non memory instructions separates.

For memory instructions:
 They are added in the load/store queue, where they will be issued whenever the output port

from the CPU to the L1Cache is available (it may be full if the L1Cache has the maximum
number of request pending) (submit_cycle).

 Whenever  the  output  port  is  available,  the  oldest  ready  memory  instruction’s  requests  are
submitted. Newer instructions can be submitted before older ones if those are not ready, unless
parameter issue_memory_operations_in_order is set to 1. 

 The output buffer will be filled with one Request per cache line that is contained in the request.
For  gather/scatter  or  strided  load/stores  with  stride  >  4  (configurable  with  the
strided_merge_limit parameter) Requests will be issued per vector element (one per cache line
that they touch).

 Whenever all the ACKs from the L1Cache have arrived, the instruction is marked as complete
(complete_cycle).

For non-memory operations:
 The instruction is submitted to execution (submit_cycle)
 The instruction contains two latency values

o Fixed latency: latency due to the use non-blocking resources.
o Variable latency: latency due to the length of the operands, it requires exclusive use of a

vector unit (configurable via vector_units parameter).
 We wait until the fixed latency has elapsed (current_cycle > decode_cycle + fixed_latency).
 Then we wait  for  a  vector  unit  to  be  available  to  execute the  variable  latency (number of

vector_units is indicated in MemCPU::vector_units).
 After the instruction has spent its variable latency on the vector unit, the vector unit is liberated

and the instruction is marked as complete (complete_cycle).For all instructions:
 When an instruction is  complete and is  the first  in  the reorder  buffer,  it  can be committed

(commit_cycle).

The  number  of  instructions  issued  and  committed  every  cycle  is  controlled  by  the  configuration
parameters issue_rate and commit_rate.



3.1 Requests life cycle in the memory hierarchy.

 When a request arrives to the Cache, it waits for the latency of the Cache.
 After the latency has elapsed:

o If the requested line is available, it is served (hit), and touched for the cache replacement
policy.

o If the line is unavailable, but present on the victim_cache, it is swapped back into the
main cache and served (hit).

o If the line is unavailable, but a MSHR entry for it is already present, we add the request
to that MSHR entry and wait for the ACK for that Cache line to arrive (half_miss).

o If the MSHR entry is not present, and we can allocate the MSHR entry and the new
cache line, we create the MSHR entry and send the request to the next memory level.

o If  either  the MSHR entry  cannot  be allocated  (reached the limit),  or  the  cache  line
cannot be allocated (all lines in the block are either waiting for an ACK or dirty, or we
cannot evict a line to the victim cache because all victim cache lines are dirty), we stall
the Cache until an ACK resolves the resource issue.

 When a request arrives to the DRAM, we check if it can be processed.
o This  is  due  to  the  simplified  mode  having  a  request  latency  and  a  bandwidth

configuration, which forces a maximum number of simultaneous processing requests in
order to avoid going over the specified bandwidth, this number is always >=1.

 If we can processes it, we add the request latency, and send the ACK once that request latency
has elapsed.

3.2 Other details

The number of requests that a hardware component, either a CPU or a cache, can send to the next level
in  a  cycle  is  controlled  by  the  num_ports  parameter. This  parameter  also  limits  the  number  of
acknowledgment messages that can be read in a cycle from that same next level.

Therefore, the bandwidth of the link would be: 
BW = (request-size * frequency * num-ports) [bytes/second]

3.3 Memory dependencies

When a new memory instruction is decoded, we check for dependencies with all pending memory
instructions  from  newer  to  oldest,  for  those  instructions  that  have  not  been  discarded.

For contiguous accesses (load, stores, strided with stride <=4):
 If  it  is a store instruction and the following three conditions are true: i)  It  fully contains a

previous non-submitted store, ii) there is no load/store instructions between the two stores with
a dependency with the first one, and iii) the merge_memory_operations parameter is set to 1,
we discard the previous store instruction.

 If  it  is  a  load  that  is  fully  contained  in  a  previous  load,  and  we  have  the
merge_memory_operations parameter set to 1, we discard the new instruction’s requests, and
we consider all dependencies on the second load fulfilled once the first one completes.



 If it overlaps with a previous pending memory instruction, and they are not both loads, we add a
dependency between the first and the second instruction and hold we hold the second one until
the first instruction completes.

For non-contiguous accesses (strided >4, gather and scatter):
 If  it  overlaps  with  a  previous  memory instruction,  and they  are  not  both  loads,  we add a

dependency and hold it until the previous instruction has been completed.
If the instruction is not discarded or put on hold until the dependency is fulfilled, it is considered ready.

1. Events present in the output Paraver trace  
In the Paraver trace each instruction is represented by a 1 ns. Event, making the X axis the number of
instructions instead of time. There are several events available:

 decode_cycle,  ready_cycle,  submit_cycle,  complete_cycle and  commit_cycle  from  the
instruction lifecycle logic are printed at the end of the instruction lifecycle.

 L1_hit, L2_hit, L3_hit, MM_hit: number of requests to the caches or main memory that are a
hit.

 MEM-merge: if the memory requests have been discarded by the memory dependency logic.
 TLB-misses: misses in the L1Cache TLB for the requests generated by the instruction.
 DRAM-requests:  number of DRAM requests that have been fulfilled before the instruction

commit_cycle.
The events complete_cycle, commit_cycle and DRAM_requests are printed at the end of the time step
representing the instruction in the Paraver trace, so the view “Next Event Value” should be used in
Paraver. All other events are in the initial line and “Last Event Value” should be used for them.
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